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A THEORETICAL INVESTIGATION OF ELECTROMAGNETIC WAVES 

OBLIQUELY INCIDENT UPON A PLASMA SLAB* 

By Calvin  T. Swift 
Langley Research  Center 

SUMMARY 

The  problem of an  electromagnetic wave  obliquely  incident upon a plasma  slab is 
considered as a boundary-value  problem by use of a self-consistent  solution of the 
coupled  linearized  Vlasov  and Maxwell equations.  Power  reflection,  transmission,  and 
absorption  coefficients are  derived  under  the  assumption  that all particles  undergo  specu- 
lar reflection at the  surfaces of the  plasma  slab. Although the  analysis is valid  for  arbi- 
trary  slab  thickness,  computational  results  are  presented  for  slabs which are thin when 
compared with a wavelength.  The results show that a series of resonances  occur which 
are  attributed  to  the  finite  temperature of the  plasma.  The results further show that  the 
resonances are Landau  damped as the  thermal  velocity of the  plasma  electrons  increases. 
It is shown that similar  resonances  can be  predicted  from  the  coupled  linearized  hydro- 
dynamic  Maxwell equations;  however, as is well known, such a model  does not predict 
Landau  damping.  The  effects of a finite  collision  frequency are then  included by means 
of a simple  Bhatnagar-Gross-Krook (BGK) collision  term.  The  numerical  computations 
vividly  indicate  that  the  resonances  undergo  severe  damping  for  extremely  small  ratios 
of the  collision  frequency  to  the  signal  frequency. 

Finally,  the  plasma  capacitor  problem is considered,  and  the  results  indicate  that 
the  longitudinal  resonances  have  characteristics  very  similar  to  those of the plane-wave 
resonances. 

INTRODUCTION 

The  interaction of electromagnetic  waves with plasmas  has  been of continuing inter- 
est  to  those engaged in  the  study of the  ionosphere, of the radar return  from  meteor trails, 
and of reentry  plasma  sheaths.  In  the last category,  most of the  research  emphasis  has 
been directed  toward  the  solution of boundary-value  problems  that  vary  in  complexity 

*The information  presented  herein was offered as a thesis in partial  fulfillment of 
the  requirements  for  the  degree of Doctor of Philosophy  in  Physics,  College of William 
and  Mary,  Williamsburg,  Virginia, August 1969. 
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from  relatively  simple  plane wave interactions (ref. 1) to  rather  complicated  ones 
involving  antennas  under "cold" plasmas (ref. 2) and  compressible  plasmas (ref. 3). 

A cold  plasma is defined  here as one in which the  electron  thermal  velocity is zero, 
and  thus  the  plasma  behaves as an  incompressible  fluid which exerts no pressure. One of 
the  primary  shortcomings of this  model is that  no  mechanism is provided  in which to 
excite a spectrum of longitudinal plasma  waves.  The  importance of these  longitudinal 
oscillations lies in  the  fact  that  they  have  been  observed  experimentally  in  the  laboratory, 
as far back as 1931 (ref. 4) and later in  connection  with  the radar scattering  from  cylin- 
drical  plasma  columns  (ref. 5). It was  observed  that  the radar return  consisted of a 
series of resonances,  the  characteristics of which a r e  shown in  figure 1. The  interesting 

feature of these  resonances is that  cold 
Main resonance plasma  theory  predicts  only  the  main 
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Discharge  tube current, amps electric  field  perpendicular  to  the  tube  and 
Figure 1.- Radar return from a cylindrical plasma column. monitoring  the  reflection  coefficient as a 

function of increasing  discharge  tube  cur- 
rent.  Because of the  thoroughness of the  experiment,  there is no doubt that  the  secondary 
resonances exist, and  they  have  since  that  time  been  termed  Tonks-Dattner  resonances. 
Although excellent  experimental  results  were  available, a satisfactory  analytical  explana- 
tion  for  these  resonances  did not appear  until  the  classic  work of Parker, Nickel,  and 
Gould (ref. 7) was  published. Upon applying a fluid  model of the  plasma,  they  were  able 
to  conclude  that a spectrum of resonances  were  generated at the  frequencies 

3KT 
m w2 = up2 + 

where  Te is the  electron  temperature, K is the Boltzmann  constant,  m is the  elec- 
tron  mass,  and k is a wave number which depends on the  radius of the  plasma  column. 
These  frequencies  correspond  to  longitudinal  plasma  oscillations, which  couple more 
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strongly  to  the  electromagnetic wave because  the  phase  velocity of such  waves is of the 
order of the  thermal  velocity of the  electrons  in  the  plasma. 

One of the  shortcomings of an  approach  based on the  linearized  fluid  equations lies 
i n  the  fact  that  for  finite  thermal  velocity, the fluid  equations are  valid only for w = wp 
(ref. 7). Analytical  results  based on such a model  should  therefore  become less inaccu- 
rate  as  the  ratio of wp/w decreases. Another  shortcoming is the failure of the  fluid 
equations  to  predict Landau  damping (ref. 8). The  proper  description  requires a detailed 
solution of the  Vlasov  equation,  where  the  Vlasov  equation is identified as the  collisionless 
Boltzmann  equation to be solved sei€-consistently with  Maxwell's  equations.  The  impor- 
tance of the  Landau  damping lies  in  the fact that  the  collisionless  damping  should  be  pro- 
nounced as the  ratio of the  thermal  velocity to the  phase  velocity of the  longitudinal  wave 
increases. It y411 be  shown that  this  ratio  increases as the  order of the  resonance 
increases,  and could  account  for  the  damping of the  secondary  resonances shown in  fig- 
ure 1. In order  to  determine how the  widths of the  resonances at half-maximum  behave 
in  detail as a function of all the  parameters, it is necessary  to  solve a boundary-value 
problem.  The  model  considered  herein  consists of a plane  wave  obliquely  incident upon 
a plasma  slab with the  electric  vector  polarized  in  the  plane of incidence so that  longi- 
tudinal  plasma  oscillations are excited.  This  particular  problem  also  has  applications 
to  the  study of antennas  under  reentry  plasmas,  because  the  radiation  characteristics of 
such  antennas  can  be  described by a spectrum of plane  waves. (See ref. 9.) The  kinetic 
treatment of this  problem  has  previously  been  considered by Hinton (ref. 10) and by 
Bowman and  Weston  (ref. 11) in  the United States and by  Kondratenko  and  Miroshnichenko 
(ref. 12) in  the  Soviet Union. Hinton (ref. 10) solved  the  problem by expressing  the cur- 
rents as integrals  over  particle  orbits.  This  procedure is equivalent  to  solving  the 
Vlasov  equation.  The  approach,  however,  requires  several  ponderous  perturbation 
expansions  and  leads  to  an  integral  equation  solution of the  problem. Bowman and  Weston 
(ref. ll), on the  other hand, used  the  singular  eigenfunction  techniques of Case  (ref.  13), 
Shure  (ref.  14),  Felderhof (ref. 15),  and Van  Kampen (ref. 16) to  obtain  solutions  to  the 
Vlasov-Maxwell  equations.  The  disadvantage of this  approach is that  analytical  and 
numerical  results  appear  to be rather difficult to obtain.  Kondratenko  and  Miroshnichenko 
(ref. 12) published  an  excellent  and  concise  piece of work.  Proceeding as Landau  (ref. 8) 
did for  the  half-space  problem,  they  used  an  integrating  factor  to  solve  the  Vlasov  equa- 
tion.  This  procedure  resulted  in a solution  in  the  form of an  integral  equation which was 
reduced by means of a Fourier  series.  The  treatment  presented  herein differs from 
theirs,  largely  in  the  initial  formulation  procedure, although the  mathematical results are 
the  same. 

In none of these  papers were numerical  results  presented. In fact, the only compu- 
tations which  have appeared  were done by Melnyk (ref. 17), who considered a plasma  the 
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equilibrium statistics of which a r e  governed by degenerate  Fermi-Dirac statistics. 
Maxwell-Boltzmann statistics  will  be  considered  and  the  problem  will be  approached by 
initially  assuming  specular  reflection of electrons at the  plasma  boundaries.  This pro- 
cedure, as will  be shown, automatically  allows  an  immediate  choice of a Fourier  series 
representation of the  problem.  This  procedure  does not lead  to a solution expressed in 
the  form of an  integral equation. It is in  this way that  the  formulation  herein  differs  from 
that  in  reference 12. The  usual  electromagnetic  boundary  conditions are used  in  connec- 
tion with the boundary  condition of specular  reflection,  The  reflection,  transmission, 
and  absorption  coefficients  are  then  solved  for  and  calculated as functions of the  plasma 
electron  density  and  thermal  velocity for a slab which is thin  compared with a free-space 
wavelength  and  for  zero  collision  frequency. A ser ies  of resonances,  that is, peaks  in  the 
reflection  coefficient,  occur which exhibit  features of the  Tonks-Dattner  resonances,  and 
which become  Landau  damped as the  thermal  velocity of the  plasma  increases.  The 
reflection  coefficient  described by a continuous  fluid  model of a plasma is also computed; 
similar  resonances  are noted  except  that  they are not Landau  damped. 

A kinetic  analysis of the  plasma  capacitor  (ref. 18) is included  to  strengthen  the 
physical  deduction  concerning  the  predominance of longitudinal  oscillations  in  the  plane- 
wave solution.  The  results show that  the  plasma  capacitor, which contains  only a Iongi- 
tudinal  electric  field,  resonates at precisely  the  same  slab  thickness,  plasma  frequency, 
thermal  velocity,  and  propagating  frequency as those  for  the  plane wave interacting with 
the  slab.  These  resonances  are  more conventionally  defined  in  the sense  that a peak  in 
resistance  and a zero  in  reactance  are noted at the  resonant  frequency. 

Finally, a finite  collision  frequency is considered by using a simple  Bhatnagar- 
Gross-Krook (BGK) collision  term  (ref. 19), and  for  purposes of nomenclature,  the  kinetic 
equation  will  be referred  to as the  Vlasov  equation.  The  results show that  the  higher 
order  resonances  are  completely  damped out at such a small  value of the  ratio of colli- 
sion  to  propagating  frequency  that  laboratory  reproduction of such  resonances would be 
difficult  to  achieve at normal  radio  and  microwave  frequencies. It is concluded  that 
although  the  present  model  exhibits  some  characteristics of the  Tonks-Dattner  reso- 
nances on a qualitative  basis,  the  detailed  structure of the  resonances is influenced by 
another  mechanism,  probably  the  inhomogeneity of the  plasma. 

SYMBOLS 

A power  absorption  coefficient 

a speed of sound in  electron  gas, m 
4 



B magnetic f lux  density 

b = (w - b v z   s i n  8>lvx 

C capacitance 

C speed of light 

D dielectric  displacement 

E electric field  intensity 

E O  amplitude of incident  electric  electric  field  intensity 

e electronic  charge 

F O  normalized  probability  function  (assumed  to  be  Gaussian  in  this  paper) 

F+ = f+ + f -  

Jj" = f+ - f -  

distribution  function  for  particles having velocity vx greater  than  zero 

distribution  function  for  particles having velocity vx less than  zero 

distribution  function (no velocity  half-plane  restrictions) 

impedance  coefficients  for  parallel  polarization  defined  in  equation (15) 

impedance  coefficients  for  perpendicular  polarization  defined  in  equation (79) 

magnetic field intensity 

amplitude of incident  magnetic  field  intensity 

Fourier  transforms of two variables  in  velocity  space, defined in 
equations (62) 
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current  per unit a rea  

J2,J11,J22,J32,J41,J52 dispersion  integrals  defined  by  equation  (Al) 

j current  density 

K Boltzmann  constant 

k wave number 

k0 wave number  in  free  space 

kP x-component of wave number  in a cold  plasma; kp = ko /5 - sin20  for 
0 

wp/w < cos 6' and kp = iko /y sin e for w P I  w > cos e 

kU 

L 

2 

m 

n 

P 

R 

T 

Te 

6 

wave number of longitudinal plasma  oscillations; ku = 

thickness of plasma  slab 

Fourier  indices (2 = 0,1,2,3,. . .) 

mass of electron 

electron  number  density 

pressure 

reflection  coefficient or resistance, as appropriate 

transmission  coefficient 

electron  temperature 



t time 

U fluid  velocity 

iix,Tiy,iiz unit vectors  in  three principal' directions 

V voltage 

V particle  velocity 

VPh phase  velocity, w/k 

VT root-mean-square  particle  velocity, /% 
X reactance 

X0 reactance of air-filled  parallel-plate  capacitor, l /wC 

X,Y,Z Cartesian  coordinates 

X' dummy variable  for  integration 

Z impedance 

Y constant  in  adiabatic equation, Pn-Y = Constant 

6ij Kronecker  delta, 0 when i # j and 1 when i = j 

E permittivity 

EO permittivity of free  space 

5 argument of dispersion  function, - - wL 1 1 

CO value of c for 1 = 0 

c' value of C for  case of a nonzero  collision  frequency 

e angle of incidence 
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K wave  number, Ir/L 

A velocity  transform  variable 

n 

permeability of free  space 

collision  frequency 

conductivity 

angular  frequency of propagation 

angular  plasma  frequency 

vector 

tensor 

absolute  value 

del  operator 

matrix 

Fourier  transform 

Subscripts: 

X,Y? denotes  vector  components  along  the  principal  directions 

2 denotes  Fourier  components 

0 denotes  first-order  or  unperturbed  quantity,  unless  otherwise  specified 

1 denotes  second-order  or  perturbed  quantity,  unless  otherwise  specified 
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1 

I I  

denotes  component of reflection or transmission  coefficient  perpendicular  to 
the  plane of incidence 

denotes  component of reflection or transmission  coefficient  parallel  to  the 
plane of incidence 

INTERACTION OF A PLANE WAVE  WITH A 

UNIFORM  PLASMA  SLAB 

Figure 2 shows  the  geometry of the  problem. A plane wave is incident upon a 
plasma  slab with the  electric  vector  polarized  in  the  plane of incidence.  The  incident 
electromagnetic wave is assumed  to  have a harmonic  dependence of the  form 

. .  

cos 8 + b z  sin 6' - 

The  faces of the  plasma  slab  are x = 0 and  x = L; the  plane of incidence is the 
x,z  plane;  and  the  angle of incidence is 8. Here ko is the  free-space  propagation  con- 
stant k, = o/c  and w is the  angular  frequency of the  incident  wave.  The  case  where 

the  electric  vector of the  incident wave is per- 
pendicular  to  the  plane of incidence is discussed 
in  an  analogous  manner  in a later  section.  Kinetic 
effects,  however,  depend upon the  ratio of thermal 4 

4 velocity  to  the  phase  velocity of the  plasma  waves 8 8 
9 - tudinal  plasma  waves.  These  waves,  however, do 

f 
4 polarized  perpendicular  to  the  plane of incidence. 

involved. This  ratio is appreciable only for  longi- 

not couple to  incident  electromagnetic  waves 
9 4 X 

The  reflection  coefficient  for  the  case  where  the 
electric  vector is parallel  to  the  plane of inci- 

x = L  

Figure 2.- Geometry of a plane wave obliquely 
incident upon a plasma slab. dence is discussed, first for  the  linearized  cold 

plasma model,  then  for  the  linearized  fluid 
model,  and  finally  for  the  linearized  Vlasov  equation (with a BGK collision  term).  The 
equations  describing  the  plasma  in  each  case  are  solved  self-consistently with Maxwell's 
equations. In each  case,  the  tangential  field  components at the left of the  slab (x < 0) are 
given by 

HY = Ho(eihx 'Os + Re 
sin 8 - wt) 

9 



E, = -Ho(e i b x  cos 8 - Re i ( b z  sin e - wt) 
(2) 

where R is the  complex  reflection  coefficient  for  the  magnetic  field  and Ho is the 
magnetic  field  amplitude of the  incident wave. MKSA units are used  throughout  the  paper. 

To  the  right of the  slab (x > L), 

Hy = HoTe i b x  cos ee i (hz  sin e - ut) ( 3) 

and 

Here T is the  complex  transmission  coefficient  for  the  magnetic  field.  The  boundary 
conditions across  the  surfaces  x = 0 and x = L require  that  the  z-dependence of the 
fields within  the  slab be the  same as those  outside;  therefore, the fields  inside  the  slab 

are of the  form [ E,H] = [ E(x),H(x)j ei(koz sin e - Ot). As such,  the  exponential  depend- 

ence  e i(kOz sin - need not explicitly  appear  in  any of the  subsequent  expressions. 

Interaction of a Plane Wave With a Uniform  Cold Plasma Slab 

If the  plasma is cold, the  random  velocity of the  free  electrons is assumed  to  be 
zero,  and  the  dielectric  constant of the  plasma  can  be  determined without resorting to 
kinetic  theory.  The  equations of motion of a free  electron  interacting with an  electro- 
magnetic wave a r e  solved  in  order  to deduce the  polarization  per  particle;  from  the 
polarization  the following expression  for  the  relative  dielectric  constant of the  plasma is 
obtained: 

2 noe2 where up is the  plasma  frequency, wp = - (no is the  electron  density,  m is the 

electron  mass, e is the  electron  charge,  and is the  permittivity of free  space)  and 
v is the  collision  frequency  for  momentum  transfer.  The  plasma  frequency wp and  the 
collision  frequency v are  assumed  to  be  constant. 

mEO 
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The  solution  to  this  problem  appears  in  reference 20 but not in a form which will 
be  useful when these  results are compared  with  those  obtained for the  fluid  and  kinetic 
models. 

In  order  to  develop  the  desired  solution  the Maxwell curl  equations 

- a B  
at V X E = -- = iwpoH 

0 

are used.  Since  the  plasma is nonparamagnetic,  the  permeability of the  plasma p is 
assumed  to be  that of free  space po, and  the  dielectric  constant E is given  by  equa- 
tion (5). By using  equations (6) and (7), i? = Hy(x) 3, in  the  slab ii, is the unit vectoY 
in  the  y-direction)  can  formally be derived.  The  result is 

( 

Hy(L) sin kpx - Hy(0) sin kp(x - L) 
sin kpL HyM = 

where Hy(0) and Hy(L) are the  values of Hy at x = 0 and  x = L, respectively,  and 

kp = b / F  for wp/w < cos 8 and kp = ik, for w w > cos 8. P/ 
Reflection,  transmission,  and  absorption  coefficients  can now be determined  from  the 
boundary  conditions,  that is, continuity of tangential E and  tangential H at x = 0 and 
x = L.  Use of equations (1) to (4), (6), (8), and  the  boundary  conditions  leads  to  the  fol- 
lowing relationships: 

HoTe ik,L COS 8 = 
Y( 

-E(l - R)Ho cos 8 = -iwpo[Hy(0) G1L - Hy(L)  G2.1 (1  1) 

ibL 'Os e COS 0 = -iwpo[Hy(0) G2L - Hy(L) GlL] 

It is important  to  note  here  that  the  functions G1 and G2 a r e  defined  separately for 
(a) the  cold  plasma model, (b) the  fluid  model,  and (c) the Vlasov  model. In this way, a 
single  algebraic  relationship  can be used  to  solve  equations (9) to (12) once G1 and G2 
are given. For the  cold  plasma, 
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If Z is defined as the  surface  impedance of the  plasma at x = 0, 

It follows  then  that 

, .  and 

ikoL G22 z =- 
cos e i cos 0 G1 - 

G1 - - 
16L 

R=- 1 - z  
l + z  

(1 + R)G2e - i h L  cos 6 
T =  

i cos e 
G1 -- 

The  absorption  coefficient  may be defined as: 

A = 1 - lRI2 - )TI2 

In the  absence of collisions (v = 0), the  absorption  coefficient of the  cold  plasma  slab is 
zero. 

In the  limit as L  approaches 03, only forward-traveling  waves exist in  the 
plasma  slab,  and  the  expression  for  the  surface  impedance  reduces  to 

Near = 1 and ( v / u )  = 0, the  dielectric  constant  approaches  zero,  and 
G1 and Gz become  large;  thus,  the  surface  impedance  can  approximately be written as 

12 



which for a thin  slab (kpL approaching 0) reduces  to 

It is seen  that  the  reflection  coefficient of even a thin  slab,  for which v = 0 and E 

approaches 0, should  be  unity at o = wp because  the  impedance  becomes  infinite. Also 
note  that  the  limit  given by equation (21) depends upon the  order  in which the  limits are 
taken  with  respect  to E and  L.  Naturally,  for  L = 0, Z goes  to  one, not zero as 
implied by equation (21). The  thin  slab is investigated  in  more  detail  later. When the 
slab is not thin,  from (14), and (15) it can  be  seen  that  the  impedance 
approaches  zero when for 1 = 0,1,2,. . . . These  values  are  the  Fabry- 
Perot  resonances which are  familiar  in  optics.  Numerical  results  are given  in a sub- 
sequent  section. 

Fluid  Description of Plane Wave Problem 

The  linearized  Vlasov  equation,  with a BGK collision  term of the  form 
-v(f - fo) = -vfl (where fo is the unperturbed  distribution  function  and f l  is the 
perturbation)  and  with a/% = -io, may be written as 

If the  zeroeth  and first moments of equation (22) a re  calculated with respect  to  the 
particle  velocity,  the  following  expressions a r e  obtained  (see ref. 21, for  example)  for 
conservation of mass  and  momentum: 

-ion1 + noV u = 0 (2 3) 

-t noeE (-iw + v)nou = -- - V - P 
- 

m 

where ii is the  fluid  velocity, P is the  pressure  tensor,  and no and  n1 are   the 
unperturbed  electron  density  and its perturbation,  respectively. 

"c 
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The  pressure  tensor  corresponds  to  terms  in  the next  higher  moment, which can be 
eliminated by assuming a scalar  pressure  and  using  the  equation of state 

P = nKTe (2 5) 

(K is the Boltzmann  constant  and Te is the  electron  temperature)  in  connection  with 
an adiabatic equation 

- P = Constant 
ny 

If the  pressure  term  in  equation (24) is linearized,  and n l  in  equation (23) is eliminated 
by using P1 = WlKTe,  the following equations a r e  obtained: 

mno(v - iw); = q,eE - V P 1  
- 

(2 7) 

where a2 = pT2 = yKTe/m and vT is the  thermal  velocity.  Equations (27) and (28) 
are  the  same  ones Wait (ref. 3) used  to  derive  the  reflection  coefficients  for a uniform 
half-space.  The  procedure  herein is similar to his,  except  that  an  additional  boundary 
at x = L is included.  The  electric  field  and  the  fluid  velocity are  related by the 
Maxwell equations 

- 
V X H = -iwEOE + noe; 

-c 

(30) 

when the last term  in  equation (30) is the  macroscopic  convection  current. 

Equations (27) to (30) can be used  to develop  wave  equations  for P1 and H‘. 

Since  the wave equation is a second-order  differential equation, a total of four unknown 
coefficients  must be determined  within  the slab (two coefficients  for P1 and two for E). 
However,  equations (27) and (29) can  be  used  to  show that the  boundary condition of spec- 
ular reflection,  that is, u = 0 at x = 0 and x = L, implies that 

14 



The two unknown coefficients  for P1 can  therefore be expressed  in  terms of those  for 
E in  the  slab.  This  procedure leads to the following  solutions: 

Hy(L) sin kpx - Hy(0) sin kp(x - L) 
sin kpL H ~ ( x )  = ~ 

where 

Aote that the  expression  for Hy(x) is identical  to  that  obtained  for  the  cold  plasma. It 
also follows  that 

w 2  
kp COS kp(X - L) +b2 sin2 8 cos ku(x - 

E, =- 
- sin kpL (1 + EO Eo 

i l F k u  sin kuL 

2 
-k sin20  cos cos kpx ,2 0 

2 

+ 
sin kpL (1 + i l ) e k u  sin k,L 

w Eo 

Therefore, if 

2 
- sin28  cos kuL wP 

G1 = ‘Os kPL + W2 
“kpL  sin  kpL (1 + iK)Lk,L  sin  kuL 
EO w %  

and 

2 
5 sin20 

1 + W2 ~ 

G2 = (87 LkpL  s in  kpL (1 + iL) AkuL  sin kuL 
EO 0 %  

(34) 

(35) 

(36) 
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an  expression  for  the  impedance at x = 0 identical  with  the  cold  plasma  result (eq. (15)) 
is obtained,  but  with the  functions G1 and G2 given now by equations (35) and (36). 
When ku = 00, that is, when a2 = 0, G1 and G2 reduce to those  for  the  cold  plasma. 
By inspecting  equations (35) and (36), it is noted  that  for v = 0, Fabry-Perot type 
resonances  occur when k,L = 2n (2 = 0,1,2,. . .) in  addition  to  the  cold  plasma  reso- 
nances €/eO = 0 and kpL = (2 + 1/2)77 (2 = 0,1,2,. . .). It is interesting  to note at this 
point  that  the  phase  velocity  can  be  very low for  longitudinal  waves,  and  therefore 
resonances  can be  expected  for  slabs which a r e  thin  compared with a free-space wave- 
length. If the  thermal  velocity VT = a/fi is small  compared with the  speed of light, 
these  resonances  occur when 

o r  at a phase  velocity Vph = - koL c.  The  phase  velocity of longitudinal  waves  therefore 
becomes  smaller as the  slab  dimension  decreases  and as the  order of the  resonances 
increases.  The  quantity y is normally  assumed  to  be  three  for  an  electron  gas. 

nn 

Results of calculations  for  the  reflection  and  absorption  coefficients  are  presented 
in  the  section  "Numerical  Results,"  and  comparisons  are  made with those  obtained  from 
the  other  models of the  plasma. 

Direct Solution of Plane Wave Problem 

Using Linearized  Vlasov  Equation 

In the  preceding  section,  the  linearized  Vlasov  equation  (eq. (22)) was written with a 
BGK collision  term of the  form -v(f - fo) = -181 and with a/at = -iw as 

where  fo is the unperturbed  distribution  function, f l  is the  perturbation of the distri- 
bution  function, 7 is the  particle  velocity,  and is the  particle  position.  Equa- 
tion (22) is to be  solved  self-consistently  with  the Maxwell curl  equations: 

V X E' = iwpoH 
-L 
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where  the last term  in equation (38) is the  density of the  convection  current. In order to 
proceed,  the  distribution  functions  for  the  velocity  half-space vx > 0 and  the  velocity 
half-space  vx < 0 are  considered  separately. If the  former is denoted by f l+( .  . . vx . . .) 
and  the latter denoted by f l - ( .  . . -vx . . .), f l +  and f l -  satisfy  the following  equations: 

+ 
+ (-iw + v)f l  + vx ax afl + ikovz sin 6 f l +  - (. , afo + E x 3) avx = o  

If the  expressions F = f l  + f l -  and F- = f l +  - f l -  a r e  introduced,  the following 
second-order  differential  equation  in  x is obtained  for F-: 

+ + 

If all particles  are  specularly  reflected at x = 0 and x = L,  then F- must  vanish at 
x = 0 and  x = L. This condition  can  be  satisfied  identically by a Fourier  sine  series 
for F- as a function of x: 

F- = 2 F2(T) sin - 2.rrx L 
2=1 

with 

(4 3) 

Examining  equations (42) and (43) indicates  that  they  imply a Fourier  sine  series  expan- 
sion  for E, and a cosine series for E,. 

If EZx, El,, and Hzy are  the  corresponding  Fourier  coefficients  for E,, E,, 
and Hy, 
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where 

is the  equilibrium  distribution  function  and is assumed  to  be Maxwellian.  The Fourier 
components of F+ are derived  in a similar  manner. Since the x and z components 
of the  current  density  are defined as 

and 

it follows  that  the  Fourier  components of j, and jz are:  

where 
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00 
O3 dv, vz2(w - kovz sin O)Fo 

J42 = ll &y &z lo 
-00 (w - kovz sin 8 + iv)2 - ( ~ r  Z m X  

A Fourier  analysis of the Maxwell curl  equations  (eqs. (38) and (39)) gives 

2 Ezz = -iko sin 8 E,, + i w p o  HIY (51) 

Therefore, if the  modal  components of the  current (eq. (46)) a r e  substituted  into 
equations (52) and (53), three  equations which contain  the unknowns El,, Elz, and Hzy 
are obtained.  Solution of these  equations  yields: 
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By using  equations (33) to (35), 

where G1 and G2 are the  functions  previously  introduced  to define the  surface  imped- 
ance  for  the  cold  plasma  and  fluid  models.  From  equations (54),  (56), and (57), it follows 
that G1 and G2 for  the Vlasov  model are 

where J51 is defined as J51 = (I l1 - J21 c sin e)@-. The  reflection  and  transmission 
coefficients  can  be  derived by substituting G1 and G2 into  equations (15),  (16), 
and (17). 

17T 
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Before  proceeding, it is .instructive to examine,  in  more  detail,  the  dispersion 
integrals which appear  in  equations (58) and (59). Since it has  been  assumed  that  the 
unperturbed  distribution  function is Maxwellian, it follows  that 

and  the  vy  integration  trivially  disappears.  The  integration on vx may  be  extended 
over  the  entire real axis by noting that  the  integrand is an .even  function of vx. Further- 
more, if a partial  fraction  expansion is used,  the  integral J12 becomes 

00 

J12 = (1 + i:)ss &x &z Fovx 

-00 w - kovz sin 8 - InVx - + i v  L 

with similar  reductions  for  the  other  dispersion  integrals. 

Use can now be  made of Fourier  transforms  in  velocity  space  (ref. 22) to  reduce 
them  to  single  integrals.  For  example,  the  zeroeth-order  dispersion  integral J2 can 
be  written as a convolution in  the  form 

00 

J2 = (1 + i$)ll &x * z  Fo - - - ' + ') fl H1 (AX,Az) H2 *(Ax,Az) dAx dA, 
-00 w - kovz sin 8 - 2 m ~  - + i v  (2d2 " L 

where Ax and A, are  the  transform  variables of the  velocity  components vx and 
vz,  respectively,  and Hl(Ax,Az) and H2*(Ax,Az) are given  by 

00 i (A~V,+A,VJ 
e 

koL sin 6' iLv) 
vx - (e - vz 

27T 277 
+- 

-i (AXv+Azvz) - ( V X ~ + V Z ~ ) / ~ V T ~  

H 2 * ( n , , 4  = JJ e e 
-00 2 m T  2 

The first of equations (62) can  be  evaluated by using  contour  integration  in  the  complex vx 
plane.  The  integration  over vx gives 
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inx (o+i v ) ~  -inx - L kovzL sin 
27riL 

W iAzvz 2.rr H I =  -- e e 

= o  

The  integration  over  vz  gives 

= o  

Equation (61) therefore  reduces  to 

and  the  other  dispersion  integrals  become 
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As shown  in  appendix A, these  integrals  can  further be  reduced so that  they  can  be 
expressed  in  terms of the  dispersion  function of Fried  and Conte  (ref. 23). 

It should  be  emphasized  again  that G1 and G2 as previously  given  specify  the 
surface  impedance of the  plasma,  and  therefore  uniquely  specify  the  reflection,  trans- 
mission,  and  absorption  coeffjcients  for  the  plane wave problem. In  appendix B, it is 
shown that  results  reduce  to  those of the  half-space  in  the  limit as L - 00, as they  should. 

As the  ratio of vT/vph (vph being  the  phase  velocity of the wave) becomes  small, 
the  imaginary  parts of the  dispersion  integrals Jln are negligible,  and  the  real  parts of 
the  dispersion  integrals  can be expanded  in increasing  powers of vT/vph, as shown in 
appendix A. The  results, when applied  to  equations (68) and (69) a r e  

Resonances occur 

! 
1=0 

m c 
2=0 

2 
1 + 6, 2 

in G1 and G2 

2(-1)1 
1 + 6, Z 

when 

32 
w 

which is approximately  the  same as the  hydrodynamic  results  for wp/w 1. With K 

defined as ZT/L, it is noted  that  the  resonances  defined by equation (72) occur when 
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vPh - - - w koL 

VT KVT 

(7 3) 

Thus  the  kinetic  effect,  that is, Landau  damping,  should  become  more  pronounced as the 
ratio of Vph/VT becomes  smaller.  Therefore,  for  fixed VT/C and  fixed k&, the 
Landau  damping  should  become more  severe as the  order of the  resonance  increases. 
Numerical  results of the  reflection  and  absorption  coefficients  are  discussed  subsequently. 

Kinetic  Results  for  Electric  Field  Perpendicular 

to  Plane of Incidence 

It has  been  indicated  that  most of the  interesting  effects  associated with a plane 
wave  obliquely incident upon a plasma  layer  occur with longitudinal plasma  waves  excited 
in  the  plasma. As such,  the  case of the  electric  vector  perpendicular  to  the  plane of inci- 
dence (E = EyCY in  fig. 2) is only of secondary  interest. However,  the  results  are 
included  here  for  completeness. By proceeding as in  the  section  "Direct Solution of 
Plane Wave Problem Using  Linearized  Vlasov  Equation,"  the  Fourier  coefficients of 
F- a r e  found to be 

It further  follows  from  the Maxwell curl  equations that 

ajy 
V2Hz + b 2 H z  = -- 

ax 

or  

aF1+ 
Hz = -e 1 d 7  vy ax 

(7 5) 
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A Fourier  expansion  solution of equation (76) gives 

where 

J z =  h z  Fo 

-* w - b v z  sin 8 - - + i v  z m X  
L 

If R' and T L   a r e  defined as the  reflection  and  transmission  coefficients  for  the  case 
where  the  electric  field is perpendicular  to  the  plane of incidence,  then 

Ey = Eo(e i b x  cos e + Rle-iw cos e) , i(kz  sin e - wt) 

for x 0 and 

Ey = EoT I e i(W c o s e + b z   s i n e - w t )  . 

for x > L. If the  boundary-value  problem is completed, it is found that 

1 +R' 
1 - RL 
- = Z = -ikoL  cos 8 

where Z is the  surface  impedance,  and  the  functions GI- and G B  a r e  given by 
I 
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Equation (79) is slightly  different  in  form  from  that  previously  obtained  for  the  case of 
parallel incidence; this  difference  occurs  because RL, in  this  case, is the  ratio of the 
reflected  to  the  incident  electric  field. 

Relationship  to  Plasma  Capacitor  Problem 

It  has  already  been  pointed out that  although  the  ratio of vT/Vph is ordinarily 
negligible  for  transverse  waves,  parallel-polarized  waves  might be expected  to show 
interesting  kinetic  effects, as shown. As further  support of this  assumption, it is useful 
to  compare  the  plane-wave  calculations with corresponding  computations  in which  only 
longitudinal  plasma  oscillations a re  excited.  The  plasma  capacitor  provides  this 
information. 

The  problem  under  consideration  consists of a plane-parallel  plasma-filled  capaci- 
tor, whose  plates are located at x = 0 and  x = L. An electric  field,  oscillating at an 
angular  frequency w,  is applied  normal  to  the  plates.  In  this  section it is shown that  the 
capacitor  exhibits  resonance  behavior at the  same  values of %L, (wp/w)2, and VT/Vph. 
In order  to  effect  this  behavior,  the  impedance of the  capacitor  will  be  determined, as 
done by Hall (ref. 18) and  Shure  (ref.  24). 

If E, and v are   set  equal  to  zero  in  equations (40) and (41), and a process 
analogous  to  that which led  to  the  expression  for  the  x-component of the  current  density 
(eq.  (46)) is followed, the  Fourier  coefficients of the  current  density  in  the  capacitor  are 
found to be 

iwp 2 
il, = Is 11 IX 

wEo GJ E 

VT 

which is nothing more  than  equation (46)  with Hzy = 0. The  continuity  equation,  relating 
charge  density  and  current  density,  gives 

-- - 
A 
I _ .  J, - ioeoEx = Constant 

where I/A is the  current  per unit area on the  plate of the  capacitor. A Fourier 
expansion of equation (83) gives 
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Since  the  voltage  between  the  plates is given by V = -loL E, dx, the  impedance of the 

capacitor is given by 

where C is the  capacitance in the  absence of a plasma. If A+ = 1 - - - 
VT 

tion (85) becomes  identical  to  that  obtained by Shure  (ref. 24). For vT/vph << 1, equa- 
tion (85) reduces  to 

00 

1 - (-1)Z 
iwC 

An inspection of the  denominator of the  sum in  equation (86) shows  that  resonances 
occur when 

Equation (87) is identical  to  equation (72), which  defined  the  resonance condition for a 
plane wave incident upon the slab. Therefore  similarities between  the  plane wave  and 
capacitor  results  should be expected.  These  similarities  are  exhibited  in  the  form of 
numerical  calculations  in  the next section. 
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Numerical  Results 

In  order  to  delineate  clearly  the  differences  between  using cold, fluid,  and  kinetic 
models  for a plane  electromagnetic  wave  obliquely  incident upon a plasma  layer, compu- 
tations of the  reflection  coefficient for each  model  were  made as a function of 
with the following parameters fixed: 

0 = 15' 

koL = 0.1 

"=o V 
w 

and  vT/vph = 0.157. The  results are shown  in figure 3. Note that  for  the  cold  plasma 
(fig.  3(a)),  only  one  resonance  occurs,  and  that is located at w = wp. In  the  fluid  limit 

(fig. 3(b)), a ser ies  of resonances  occur,  corresponding  to the zeros of sin - 1 - - 

Also  note  that  the  main  resonance is displaced  from ( W ~ / W ) ~  = 1 and  that  each  higher 
order  resonance is narrower  than its predecessor.  The  results  obtained  from  the Vlasov 
equation are  similar  to  those  obtained with the  hydrodynamic  equations,  except  that  the 
resonances do  not occur at the  same  values of (wP/w)'. The departure  becomes  more 
pronounced with increasing  order, but this  difference is to be expected  since  the  fluid 
approximation  becomes  less  valid.  (For  example,  compare  eqs. (37) and (72).) Also 
note  that a resonance is associated with  each odd term of the  Fourier  expansion. 

@?$. 

When the  phase  velocity of the wave  becomes of the  same  order as the  thermal 
velocity of the  plasma,  electrostatic  energy in the wave is absorbed by the  electrons  and 
converted  to  kinetic  energy.  This condition occurs  because of the  inertial "drag" of the 
electrons,  and is the well-known  phenomenon of Landau  damping. In order  to demon- 
strate the  effects of Landau  damping,  the 2 = 5  resonance was investigated  for  addi- 
tional  values of the  parameters.  The  reflection  and  absorption  coefficients are shown  in 
figure 4 for  various  values of  VT/Vph, where  the  abscissa  has  been  grossly  exaggerated. 
For vT/vph = 0.157, little Landau  damping  occurs, as evidenced by a narrow  resonance 
having a peak  reflection  coefficient  near unity.  However,  absorption  becomes  very 
pronounced with only a small  increase in  vT/vph.  Note  that  the  resonance is heavily 
Landau  damped at a ratio of VT Vph  of less than 0.2. It is somewhat  surprising I 
28 
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(a) Cold plasma  theory. 

(b) Linearized  fluid model. 

(c)  Model based on  the  linearized  Vlasov  equation. 

Figure 3.- Reflection  coefficient of a  plasma  wave  incident  upon  a  plasma slab. 
koL = 0.1; VT/C = 10-3; VT/Vph = 0.157. 
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Figure 4.- Reflection  and  absorption  coefficients  as a 
func t ion  of t he  plasma  electron  density  for  various 
electron  thermal  velocities. I = 5; k,L = 0.1. 

to  see so much  damping at such a low value of  VT/Vph, but this condition occurs  because 
the width of the  resonance is so small.  The  pertinence of the line width is discussed 
later when collisional  damping is considered.  The  resonant  peak  also  occurs at smaller 
values of ( w ~ / w ) ~  as VT/V increases, as is evidenced  in  figure 5, where  the 
abscissa is again  exaggerated.  The  reflection  and  absorption  coefficients a r e  plotted 
as functions of for  various  values of the  angle of incidence,  in  figure 6 with the 
following parameters fixed: 

Ph 
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Figure 5.- Resonant  frequency  as a funct ion of electron  density  and  electron 
thermal  velocity. Z = 5; koL = 0.1. 
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Figure 6.- Reflection  and  absorption  coefficients as a function  of 
electron  density  for  various  angles of incidence. 1 = 5; koL = 0.1; 
vT/C = 1.16 x w 3 ;  VT/Vph = 0.182. 

As the  angle of incidence  increases  from 8 = 5' to 8 = 15O, the  peak  value of the 
absorption  coefficient  increases,  in  large  part,  because  the  longitudinal  component of the 
electric  field  increases  in  proportion  to  sin 8. As 8 further  increases,  the  transverse 
electromagnetic  waves  become  evanescent within the  slab.  Since  the  transverse  waves 
and  longitudinal waves a r e  coupled, this  condition  leads  to a damping of the  resonance. 

k i k p  * i b x / G ,  the ' 

Since  electromagnetic  waves in a plasma  propagate as e = e  

waves  become  evanescent when 8 = cos-' 2, which is about 19O for  the  case  considered 
here.  Furthermore,  note in figure 6 that  there is very  little  shift in the  position of the 
resonance with increasing  values of the  angle of incidence. 

w 

The  reflection  and  absorption  coefficients  plotted as a function of and 
v / o  a r e  shown  in figure 7 for  the  model  based on the  Vlasov equation, with the following 
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Figure 7.- Reflection and absorption coefficients as a function of 
electron  density  for  various  values of collision  frequency  for a 
plasma model based on  the  linearized Vlasov equation  with a 
Bhatnagar-Gross-Krook collision  term. Z = 5 ;  koL = 0.1; 
V V C  = w 3 ;  VdVph = 0.157. 
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For  values of v/w less than  about lom6, the  collisions do  not appreciably  influ- 
ence  the  reflection  and  absorption  coefficients;  however, as v/w increases a couple of 
orders of magnitude, the damping  becomes  pronounced. Although it may, at first glance, 
seem  surprising  that  such a large  effect  occurs  for v/w as low as from  figur.e 7 
it can  be  seen  that  the  line width is of the  order of From  our  general knowledge of 
resonance  phenomena,  damping is expected  to  be  appreciable  whenever  the  collision fre- 
quency is of the  order of the  line width. This condition also  accounts  for  the  degree of 
Landau  damping  observed  in  figure 4.  Similar  conclusions  can  be  drawn by inspecting  the 
fluid  results shown in  figure 8. 

A 

Figure 8.- Reflection and absorption coefficient as a  function of 
electron  density  with  collision  frequency as a parameter for  a 
linearized  fluid equation. Z = 5; koL = 0.1; VT/C = 10-3; 
VT/vph = 0.157. 
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Computer  results  for  the  impedance of the  plasma  capacitor  are shown in  figure 9, 
when the  resistance  and  reactance  (normalized  to X, = l/oC) a re  plotted as a function 
of (wp/w)2. Figure g(a) gives  results  for vT/C = 10-3 (VT/Vph = 0.157); figure  9(b), 
for  VT/C = 1.20 X 10-3 (vT/vph = 0.188); and  figure ~ ( c ) ,  for  VT/C = 1.30 X 10-3 
(vT/vph = 0.203). In  each  case,  the  normalized  slab  thickness b L  is fixed at 0.1. 
Therefore,  except  for  the  angle of incidence, which does not appear in the  capacitor 

R 

Figure 9.- The  impedance of a  plasma  capacitor  as  a  function of electron  density 
for  several  values of the  thermal  velocity. Z = 5; koL = 0.1. 
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expression, all pertinent  capacitor  parameters are the same as those  for the 1 = 5 plane- 
wave resonance.  From  figure 9 it can  be  seen that the resonance is very  sharp  for low 
values of vT/c,  and the width at half-maximum  noticeably  broadens as the thermal  veloc- 
ity  increases, as does the reflection  coefficient of the  plane wave.  Note further that if 
figure 9 is compared with figures 4 and 5, the peak of the resonance  for the capacitor  and 
the obliquely  incident  parallel-polarized  plane wave occurs at precisely  the  same  values 
of the  plasma  parameters. 
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RESULTS AND  DISCUSSION 

The  prime  objective  in  the  work  described  herein was to  examine  analytically  and 
numerically  the  details of the  coupling  phenomena  that  occurs  between  electromagnetic 
waves  and  longitudinal  plasma  oscillations.  This  examination was made  in  order  to 
relate  this  problem  to  the  Tonks-Dattner  resonances, which a r e  known to  occur when the 
electromagnetic  field is applied  to  an  inhomogeneous  plasma  in  such a way as to couple 
to longitudinal plasma  waves.  The  model of the  inhomogeneous  plasma  used  was of the 
simplest  type, a thin  uniform  plasma  slab.  The  specific  boundary-value  problem  con- 
sidered  an  electromagnetic  plane wave  obliquely  incident upon the  slab,  and  assumed 
specular  reflection of plasma  electrons  from  the  faces of the  slab. By solving  for  the 
reflection,  transmission,  and  absorption  coefficients,  the  detailed  behavior of the  reson- 
ances,  that is, the  shift  in  resonant  frequency  and  changes  in  the width at half-maximum 
of the  resonances  in  the  reflection  coefficient as a function of the  plasma  parameters 
could  be  examined.  The  problem  was  approached  in  such a way as to  delineate  the dif- 
ferences, both from a physical  and  computational  viewpoint,  between a cold  plasma  model, 
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a fluid  model,  and a model  based  on  the  Vlasov  equation.  The case  where  the electric 
vector  was  polarized  parallel  to  the  plane of incidence  was  considered  in  detail. Only 
this  polarization  excites  longitudinal  plasma  oscillation,  for which the  ratio of the  thermal 
velocity of the  particles  to  the  phase  velocity of the  wave is not so small as to  diminish 
the  kinetic  effects.  The  analysis  further  showed  that  from  the  practical  viewpoint,  only 
the  lower  order  longitudinal  plasma  resonances  (that is, 2 = 1, 3, and 5) can  be  supported; 
these  resonances are well  separated  only if  the  plasma  slab is thin  compared with the 
wavelength of the  incident  wave. If the  plasma is thick,  the  resonances  become  more 
grouped  near w = up, for  other  parameters  fixed, as evidenced  from  equation (72). The 
cold  plasma  model  predicts  for  such a slab  that only  one  resonance  can  be  supported,  and 
that  resonance  occurs when the  signal  frequency  equals  the  plasma  frequency.  The  fluid 
model  was found to  support a ser ies  of resonances;  these  resonances  became  narrower as 
the  order  increased,  and are similar  in  nature  to  the  Tonks-Dattner  resonances  in  the 
sense  that  the  secondary  resonances  occur at successively  lower  values of the  electron 
density  than  the  main  resonance  does.  Similar  resonances  were  observed when a kinetic 
analysis  using  the  Vlasov  equation was undertaken  except  that  electron  densities  for 
resonance  were  shifted,  and  the  effects of Landau  damping  became  evident as the  thermal 
velocity  increased.  This  result is a manifestation of the  fact  that  the  ratio VT Vph can 
no longer  be  considered  negligible as the  order  increases.  This damping  with increasing 
order is qualitatively  consistent  with  the  experimental  observations of the  behavior of the 
Tonks-Dattner  resonances. Such collisionless  damping  cannot  be  anticipated  from  the 
fluid  equations.  Lhe  fluid  equations,  however,  have  the  advantage of presenting a simple 
physical  picture of the  standing wave processes  that  occur within the  slab. 

/ 

The  pertinence of the  parallel-plate  plasma-filled  capacitor  problem was demon- 
strated by calculating  the  impedance of the  capacitor as a function of slab  thickness, 
plasma  frequency,  propagating  frequency,  and  thermal  velocity.  It was found  that when 
the  slab is driven  either by the  capacitor  or by a plane wave, resonances  occur at the 
same  values of these  parameters,  and  that Landau  damping  commences  in both problems 
at the  same  values of the  thermal  velocity. 

Most of the  computational  effort  pertaining  to  the  Vlasov  equation  consisted of evalu- 
ating  the  dispersion  function,  and  using it to  determine  numerically  the  series given  by 
equations (68) and  (69). (See appendix C for  details.)  This  series would, in  turn,  be  used 
to  determine  reflection,  transmission,  and  absorption  coefficients. One of the  more  sur- 
prising  aspects of the  computations  was  that,  for  the  cases  considered,  the  infinite  series 
given by equations (68) and (69) can  accurately be represented by only  two terms  in  the 
series. These  terms  consist of the first (2 = 0) term  and  that odd term (2 = 1,3,5, .  . .) which 
corresponds  most  nearly  to  resonance  for  the  parameters  under  consideration.  This  result 
is to  be  contrasted  with  the  half-space  solution  (to which the results reduce as the  slab 
dimension  goes  to  infinity) which usually  requires  more involved  computational  techniques. 
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The  influence of collisional  damping of the  resonances is then  considered. For the 
particular  parameters  considered, it was  observed  that  unless  the  ratio of collision 
frequency  to  signal  frequency is'less than  about 10-4, the  third odd resonance is damped 
out.  Since a collision  frequency  ratio of less than 10-4 for  gaseous  plasmas is not easy 
to  achieve  in  the  laboratory, it is not difficult to conclude  that  the  uniform  slab  can  sup- 
port  the  experimentally  observed  Tonks-Dattner  resonances. 

It is a temptation  to  conclude  that  the  inhomogeneity of the  plasma  does  more  than 
merely  control  the  spacing of the  resonances (ref. 7). The  results  lead  us  to  believe  that 
the inhomogeneity  may also  tend  to  broaden  the width of the  higher  order  resonances at 
half-maximum, which would make  them  less  sensitive  to  collisional  and  Landau  damping. 
This  broadening  could  occur  either  because  the  inhomogeneity  provides a gradual  transi- 
tion  in  the  impedance  between  the  plasma  and  the air interface, o r  because  the  inhomo- 
geneity  induces a background  field which causes  resonant  trapping of the  electrons. An 
investigation of the  latter  problem  (that is, consideration of the background  field) is a 
very  formidable  task,  indeed.  The  description of even  the  simplest  problems  has  devel- 
oped  into  enormous  and  frustrating  computer  programing  projects  (refs. 25 and 26), and 
illuminating  results  are  difficult  to  achieve  unless many simplifying  assumptions a r e  
made  (ref. 27). However,  such  results  should  present  some new and  rather  interesting 
kinetic  effects,  and  the  problem is therefore worthwhile to  pursue. If the  background 
field  can  be  ignored  (ref. 28), the  problem  becomes  more  tractable (but still numerically 
much more difficult  than  that  for  the  uniform  plasma). Such a solution  may  be  valuable  in 
order  to  determine  whether a gradual  reduction  in  electron  density  at  the  boundaries will 
broaden  the  resonances. 

The  techniques  described  here  can  easily  be  extended  to  other  problems  such as: 
(1) the  study of the  impedance  characteristics of antennas  under  plasmas  (ref. 9), (2) the 
effects of nonspecular  reflecting  boundaries,  and (3) electromagnetic  waves  obliquely  inci- 
dent upon a plasma  slab  in which a static  magnetic  field is applied  normal  to  the bound- 
aries. All  these  problems  are of interest  and  may  be  approached by extending  the  tech- 
niques of the  current  work. 

CONCLUDING  REMARKS 

The  classical  problem of an  electromagnetic wave  obliquely  incident upon a plasma 
slab  was  investigated by using  the  coupled  Maxwell-Vlasov  equations. For the  param- 
eters considered, a plot of reflection  coefficient  against  electron  density  reveals a 
ser ies  of resonances which become  narrower  and  Landau  damped as the  order of the 
resonance  increases.  This  behavior is in  qualitative  agreement with experimentally 

39 



observed  Tonks-Dattner  resonances.  However, on a quantitative basis, the  computed 
resonances are much closer  together  than  experiment  indicates;  this effect is probably 
due to  the inhomogeneity of the  plasma. 

Langley Research  Center, 
National  Aeronautics  and  Space  Administration, 

Hampton, Va., January 6, 1970. 
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APPENDIX A 

FURTHER PROPERTIES  OF THE  DISPERSION  INTEGRALS 

If the  collision  frequency v is zero,  the  various  dispersion  integrals  may be 
defined as follows: 

Jz J 1z  1 
J 5 4  

where  the  integration  over vy has been performed  to give 

which is the  two-dimensional  Maxwellian  distribution  function. From the  integral 
relationships, 

11 -03 vxF0  vzFo dvx dv, = 0 
hZ = 

-03 

and 

00 

-03 

It is possible  to show that by multiplying  the  numerators  and  denominators of the  inte- 

grands of equations (A2) and (A3) by w - h v z  sin 8 - - L Y  
zmX 
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J41 J31 = - sin e + - Jzl In 
C WL (A51 

As shown in  the  text, it is possible  to  use  Fourier  transforms  in  velocity  space  to 
re-express equation (Al) in  terms of single  integrals  over  the  transform  variable Ax. 
The  results are: 

” 

J 1  

Jll 

J21 

1 

-iAxVT 2 

-illx koLvT2 sin e I l l  

In the  limit as VT approaches 0, the  exponential involving V T ~  may  be  expanded 
as a Taylor  series  to give approximations for the  real  parts of the  dispersion  integrals as 
the  thermal  velocity of the  plasma  approaches  zero.  The  results  are 

2 
J11= VT - -[ l n  I + ”  W22( L2 

W 2  L 1 3vT Z2n2 + %2 sin2e 
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4 
J2z = 2k0 sin 8 - - la VT 

L w3 

These  integrals  are now related  to  the  tabulated  plasma  dispersion  function, as 
given by Fried  and Conte (ref. 23). Fried  and Conte  define the  dispersion function as 

which  may  be recognized as the  Hilbert  transform of the  Gaussian. If a change of vari- 

ables is used so that x = -, with "X 

fia 

and 5 is defined as 

the  velocity  transforms  may  be  used  to show that 
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Further  manipulations  may  be  performed  to show that 

The  identities (A4) and (A5) in  connection with equations (A17) to (A19) may  be  used 
to  express J41 ( 5 )  and J52(<) in te rms  of the  dispersion  function.  For 1 = 0, the 
dispersion  integrals  become 

where 

5 ,  = 
w 

kofivT  sin 8 

Finally, if Hzy had  been  eliminated  in  equation (43), the  Fourier  components of the 
current  density  could  have  been  expressed  in  the  following  form: 
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If the  modes of the  conductivity  tensor 7 values are defined  through  Ohm's law, 

jzx = ~xxzEzx + OXZZ zz 

E ?  

These  expressions  agree with those of Hinton, who solved  this  problem by integrating 
over  particle  trajectories. 

For a finite  collision  frequency  ratio u/w,  the  pertinent  dispersion  integrals  are 
given by equations (56), (57), (59), and (60), which are  also  expressible  in  terms of the 
dispersion  function as 
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where, for a finite  collision  frequency, 

.(A32) 
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APPENDIX B 

INTERACTION OF  A PLANE  WAVE-WITH A PLASMA HALF SPACE 

For the  case  where  the  slab  thickness  L  approaches.infinity,  the  problem  can  be 
solved  in  the  original way that  Landau  and  others  have  done.  The  Vlasov  equation is 
written  in  the  form: 

af 1 e a f ~  e E  af0 - o  - i w f l  + vx - + ib f lvz   s in  6 - - E - - - ax m avz m x a v X  

The  Vlasov  equation is again  Fourier  analyzed in configuration  space,  except  that 
the  half-space  requires a superposition of continuous  modes  rather  than  discrete  modes. 
In other  words, f l  is expanded as a Fourier  integral  instead of a Fourier  series: 

fl(i;,x) = Srn fl(.,kx) eikxx dkx 
-a3 

A  straightforward  Fourier  analysis of equation (Bl),  in  connection  with  the  convolution 
theorem  gives: 

with 

w - kovz sin 8 

VX 
b =  

c e 
CL 

If the  field  components of equation (B3) are  expressed in te rms  of their  Fourier 
transforms, 
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for all vx where a bar  denotes  the  Fourier  transform.  From  the  definition of the  cur- 
rent  components, 

where  the J terms  in  equations (B6) and (B7) a r e  identical  to  the  dispersion  integrals 
given  in  appendix A, Za/L being  replaced by the  continuous wave number k,. The 
currents  explicitly  appear  in  the wave  equation as follows: 

The  form of equation (B3) suggests  the  symmetry  properties Hy(x) = -Hy(-x), 
jx(x) = -jx(-x),  and j,(x) = j,(-x). Applying these  properties to the  Fourier  transform 
(eq.  (B8)) gives 

Hy(O) 
(ko2 - ko2 sin28 - Ey - ikx - a 

= - E0Wp2 - ExEkxJ2(kx) + k, sin 8 J5(kxg + ko sin 8 J2(kxg (B9) 

VT2 

where a bar  over a field  component  denotes a Fourier  transform.  The  Fourier  trans- 
forms of the Maxwell curl  equations  are: 
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Equations (B9),  (BlO), and (B11) are all that are needed  to  solve  for all the  field compo- 
nents.  After  several  ponderous  algebraic  manipulations,  the  following  results are 
obtained: 

2 
- sin2@ - - 

- 

up2 Jl(kx) 2 2  sin e J2(kx]} 

71 [ - .T2 - ko2 sin2B - kx2 - 
ko k4(kx) - WvT2  kX 

The  field  expressions  for  the  plasma  slab  (eqs. (54) to (56)) a r e  of the  following  form: 

00 

E, = 1 cos - lm 
L 

1=0 
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But, it also  follows  from  equations (54) to (56) that Hzy = -H-ly, Ezx = -E-2x and 
Elz, = E-lz so that  the  summation  index 2 can  be  extended  from -00 to +00 to  yield 

and  similar  expressions for E, and E,. In the  limit as L approaches 00, the  sum- 
mations  convert  to  integrals so that ZT/L approaches kx and dkx approaches n/L. 
In  this  limit, 

In which case,  the  sum of the  terms defining Hy in  equation (54) becomes 

where Hy(L) approaches 0 as L approaches 03. Equation (B19) is the  Fourier 
transform of equation (B12). Since  equations (B13) and (B14) follow in a similar  manner, 
it has been  proven  that  the  results  for  the  slab  reduce  to  the  half-space  results as L 
approaches 00, which was  to  be shown. 
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APPENDIX C 

SOME  COMMENTS ON THE  COMPUTATIONAL  PROCEDURE 

The  programs  for all numerical  computations  were  written  in  Fortran IV for  use 
on the  Control  Data 6600 computer  facility at the  Langley  Research  Center.  The  pro- 
grams  applicable  to  the  cold  plasma  and  hydrodynamic  models  involve  only  the  elementary 
transcendental  functions of complex  arguments  and  therefore do not require  any  detailed 
explanation.  The  programs  relating  to  the  Vlasov  equation  should,  however,  be  discussed 
in a little  more  detail.  The  reflection,  transmission,  and  absorption  coefficients  were 
determined by evaluating  the  series defining G1 and G2 (eqs. (58) and (59)), which are 
repeated  here  again  for  reference: 

2 wwP 
2 

1 - s i n  0 -- J5I v m 2 d  

Equations (58) and (59) a r e  then  used  in a trivial  manner  in connection with equations (151, 
(16), (17), and (18) to  solve  for  the  reflection,  transmission,  and  absorption  coefficients. 
The  dispersion  integrals (the J terms)  in  equations (58) and (59)) were  then  expressed 
in te rms  of the  dispersion function Z(<) ,  which for < < 4 was  computed  from  the  differ- 
ential  equation: 

under  the  initial  condition  that Z(0) = i@. For c > 4, the  asymptotic  series  was  used 
(ref. 23). Calculations  were  performed only for  real  values of [ 
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For small v/w, the  dispersion  function  was  evaluated by using a Taylor series expansion: 

where,  from  equation (A32) 5 = CR(l  + i w  . Equation (C2) therefore  reduces  to "> 

for - << 1. V 
0 

For plasma  slabs which are thin  compared with a wavelength,  the numerical  results 
indicated  that G1 and G2 converged so rapidly  that only the 1 = 0 term  and  the  most 
nearly  resonant  term  contribute  to  the  series for G1 and G2. The  resonant  term is 

that  term  in odd 1 for which 1 - - "Jll in  the  denominator of equations (68) and (69) 

is a minimum.  The  dominant 1 = 0 term is simply 

2 
L 

VT2 la 
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